〈微光技术〉

紫外微通道板型光电倍增管研制及性能研究

司曙光^{1,2},金 真¹,黄国瑞¹,王兴超¹,孙建宁^{1,2},苏德坦¹,任 玲^{1,2},徐海洋¹, 吴 凯¹,金睦淳¹,黄之瑶¹,李 珅¹,顾 燕¹,王 宁¹,石梦瑶¹,张 成¹, 曹宜起¹,王 志¹,张昊达¹,汤偲晨¹

(1. 北方夜视技术股份有限公司, 江苏 南京 211106; 2. 微光夜视技术重点实验室, 陕西 西安 710065)

摘要:紫外光电倍增管是紫外告警系统和紫外光通信的关键探测器件,紫外微通道板型光电倍增管具 有高灵敏度、高增益、高分辨率、低噪声等特点,且体积小、耐冲击与振动,但国内紫外光电倍增管 起步较晚,产品技术性能薄弱,故紫外微通道板型光电倍增管的研制及性能研究迫在眉睫。本文中的 紫外微通道板型光电倍增管采用端窗式结构、MgF2材料作为光窗、Cs2Te 阴极作为光电转换阴极,可 实现 200 nm~300 nm "日盲"紫外波段的探测,倍增极使用高增益双通道板叠加结构,在电压较低的 情况下可以实现约 5×10⁶倍增能力,从而提高了紫外光电倍增管的单光子探测能力。文中简要介绍了 紫外光电倍增管的应用以及同种管型国内外的发展现状,研究紫外光电倍增管的测试方法,对自主研 发的光电倍增管进行了性能评估和数据分析。结果表明,紫外微通道板型光电倍增管阴极辐射灵敏度 较高,同时对单光子具有较好的响应,相对国外同类型的产品,具有高增益、高峰谷比、高分辨率等 优点。

Study on the Performance of an Ultraviolet Microchannel Plate Photomultiplier

SI Shuguang^{1,2}, JIN Zhen¹, HUANG Guorui¹, WANG Xingchao¹, SUN Jianning^{1,2}, SU Detan¹, REN Ling^{1,2}, XU Haiyang¹, WU Kai¹, JIN Muchun¹, HUANG Zhiyao¹, LI Shen¹, GU Yan¹, WANG Ning¹,

SHI Mengyao¹, ZHANG Cheng¹, CAO Yiqi¹, WANG Zhi¹, ZHANG Haoda¹, TANG Sichen¹

(1. North Night Vision Technology CO. LTD, Nanjing 211106, China;

2. Science and Technology on Low-Light-Level Night Version Laboratory, Xi'an 710065, China)

Abstract: Ultraviolet (UV) photomultipliers are key detectors in UV warning systems and communication. The UV microchannel plate photomultiplier tube (MCP-PMT) has the merits of high sensitivity, high gain, high resolution, low noise, small volume, and vibration resistance. However, the UV photomultiplier was invented too recently, and its technical performance is weak. Thus, further development and performance studies of the UV MCP-PMT has attracted increased attention. In this paper, a UV MCP-PMT using an end window structure is discussed. MgF₂ and Cs₂Te are used as the light window material and photocathode material, respectively. The UV MCP-PMT can detect the "day blind" UV band from 200 to 300 nm. A high-gain double channel plate structure is adopted. The device has a multiplication ability of approximately 5×10^6 under low voltage, thus improving the single photon detection capability of the UV MCP-PMT. This paper gives a brief introduction of the applications of UV MCP-PMT and the development of this type of photomultiplier in China and foreign countries. The test method of UV MCP-PMT is studied. The performance of the self-developed photomultiplier is evaluated, and the obtained data are analyzed. The results show that the MCP-PMT has high cathode radiation sensitivity with good response to single photons.

收稿日期: 2020-03-04;修订日期: 2020-07-08. 作者简介: 司曙光(1971-),男,研究员级高级工程师,长期从事光电器件技术的应用研究。E-mail:sishuguang@126.com。

Compared with the same type of products abroad, this design has the advantages of high gain, high peak valley ratio, and high resolution.

Key words: UV, photomultiplier, microchannel plate, gain, single photon

0 引言

近年来,紫外探测技术越来越受到人们的重视, 是继可见光、红外辐射技术之后又发展起来的一项重 要的光电探测技术^[1],紫外线辐射在很多现象中都存 在,宇宙空间中太阳辐射、石油和酒精灯燃烧的火焰、 气体污染物分子、闪电放电以及高压电力设备的电晕 现象等都含有紫外线辐射^[2]。由于大气臭氧对波长 200 nm~300 nm 的紫外光具有强烈的吸收作用, 此区 域被称为日盲区^[3],紫外光在大气传输时损耗严重, 不利于长距离通信,但对于局域通信和告警系统,紫 外光却有极大的优势:紫外波段通信保密性高,紫外 光不可见,且通过大气散射方式向四面八方传播信 号,因而很难从传播的信号中得到紫外光源的准确信 息;紫外探测环境适应性强,具有全天候性,在近地 面的日盲区,紫外辐射强度十分微弱,白天和晚上干 扰的暗噪声都很小;紫外探测具有全方位的特点,可 以以非视距的方式传输信号;紫外探测可实施性、可 靠性高,紫外光通信可采用车载式、机载式、舰载式 等,故也应用于"神光 III"、"紫外通信"、"小弹 头"、"025导弹驱逐舰"等重要军事工程。

紫外探测技术的关键器件为紫外光电倍增管,光 电倍增管是一种将极微弱的光信号转化为电信号的真 空器件。光电倍增管分为传统打拿极型和微通道板型 两种。微通道板型光电倍增管(Microchannel Plate Photomultiplier Tube, MCP-PMT) 是一种具有高增益、 高分辨、快时间响应、低功耗的新型光电器件。它与 打拿式倍增管相比,主要区别在于电子倍增采用的是 多单通道列阵排列,厚度仅有0.4mm左右的微通道板。 因此具有体积小、重量轻、引线少、耐冲击与振动等 特点^[4]。目前,国外光电倍增管的研制和生产厂商有日 本 Hamamatsu (滨松)、英国 ET、俄罗斯 BINP 和 MELZ 公司。其中日本滨松产品有紫外微通道板型光 电倍增管,代表型号分别是 R5916U-53、R3809U-53, 光阴极尺寸为ø10 mm,光阴极材料为 Cs₂Te,倍增结 构为两片微通道板,阴极辐射灵敏度 30 mA/W@250 nm, 增益为2×10⁵, 上升时间为0.18 ns 左右。

国内主要的光电倍增管生产厂家有:北方夜视、 中国电子科技集团有限公司第五十五研究所(55 所)、 北京滨松、北京中核控制系统有限公司(CNCS)、 华东电子管厂(741 厂)、海南展创公司和北京高新 贝森公司。北京滨松为 Hamamatsu 在中国的合资公司,主要生产低端的常规光电倍增管; CNCS 和 741 厂是生产光电倍增管历史悠久的国有企业,主要生产 传统的打拿极型光电倍增管;北京高新贝森公司为一 家民企,主要生产一些特种功能的光电倍增管;55 所 对光电倍增管的生产,主要是对基于小型近贴聚焦型 微通道板型光电倍增管的研制和生产;海南展创光电 技术公司是引进法国 Photonis 公司生产线的私营企 业,主要生产医疗配套用的打拿极型小尺寸光电倍增 增管。

国外紫外光电倍增管对中国军事禁运,而国内紫 外光电倍增管起步较晚,产品技术性能薄弱,与国外 差距巨大,55 所、741 厂具有研制紫外光电倍增管的 能力,但目前市场上同类产品主要被日本滨松所垄 断,故对紫外光电倍增管的研究迫在眉睫。

北方夜视基于目前国内外的紫外光电倍增管的大 背景环境下,自主研发紫外微通道板型光电倍增管 (MCP-PMT),并对其单光子特性和时间特性进行研究。

1 研制及测试方法

1.1 产品外形

自主研发的紫外 MCP-PMT 如图 1 所示。

其中进光方式为端窗式;光窗材料为 MgF₂;阴 极为 Cs₂Te; 微通道板数量为两片叠加;金属片作为 阳极信号接收极。

1.2 分压器

紫外 MCP-PMT 可以使用分压器对各电极进行电 压加载,也可以使用高压电源对单个电极加载电压, 本文采用高压电源加分压器的方式对各级进行分压, 如图 2 所示。

1.3 测试方法

1.3.1 阴极辐射灵敏度

硬件及连接如图3所示,光源为标准光源,测试

光源强度在 10⁻⁷ W~10⁻⁴ W。

Fig.3 Cathode radiation sensitivity test system

开启光阑,使用光功率计测量出射光的辐通量 **Φ**_k,保持光源出射条件不变,使用待测紫外 MCP-PMT 接收光源辐射,在光阴极与聚焦电极之间加载合适的 电压,使阴极输出电流达到饱和状态,测量待测 PMT 输出光电流 *I*_k,关闭光阑,测量 PMT 输出暗电流 *I*_{kd}。 阴极灵敏度按下式计算:

$$S_{\rm kr} = (I_{\rm k} - I_{\rm kd})/\Phi_{\rm k} \tag{1}$$

式中: S_{kr} 为阴极辐射灵敏度, mA/W; I_k 是开启光阑的阴极光电流, μ A; I_{kd} 为关闭光阑测得的阴极暗电流, 单位为 μ A; σ_k 为辐通量, W。

1.3.2 单光子性能

当光通量变得微弱时,在光电倍增管的时间分辨 率内(脉冲宽度)几乎没有两个以上光电子存在的状态,就叫做单光电子领域。

如图 4 所示,信号发生器输出两路同步矩形脉冲 信号,信号频率 1 kHz。一路作为电荷数字转换器 (Quantity-to-Digital Convertor,QDC)的触发信号, 脉冲宽度 150 ns;另一路作为驱动信号驱动 LD 发光。 调节驱动脉冲幅度,使光源发光 10 次,PMT 只探测 到一次光电信号。将阳极输出信号输送到放大器,然 后输送到 QDC 设备上测试单光电子谱。

图 4 单光子性能测试系统

Fig.4 Cathode radiation sensitivity test system

典型的单光子谱如图 5 所示, PMT 探测到光子的 概率服从泊松分布^[5]。

探测到一个光子的概率是探测到多个光子的 19 倍,因此在所需的增益下,当信号峰的面积除以整个 单光子谱的面积为10%时,此时的电荷谱认为是单光 子谱。

单光电子谱有两个高斯峰,一个为电子学台阶峰,另一个为单光电子脉冲电荷分布峰,电子学台阶峰和单光电子脉冲电荷分布峰,峰位分别为 X_{ped}和 X_{sig},测试仪器每道电荷量为q(其中 QDC 设备每道电荷量 q=25 fC),则电子增益为:

$$G = \frac{(X_{\rm sig} - X_{\rm ped}) \cdot e}{e}$$
(2)

式中: e 为电子电荷量。

单光电子脉冲电荷分布峰的峰值计数为 N_p,两个峰之间谷位置计数为 N_v,则峰谷比 P/V 为:

$$P/V = N_p/N_v \tag{3}$$

单光子谱使用高斯函数拟合, 拟合宽度为峰位正 负 1.5σ, σ为拟合函数的标准差, 则能量分辨率为:

能量分辨率=
$$\frac{\sigma}{X_{sig} - X_{ped}} \times 100\%$$
 (4)

1.3.3 暗计数

光电倍增管的暗噪声主要来源为阴极的热发射, 紫外 MCP-PMT 阴极尺寸较小,故具有低噪声的优势。 光电倍增管在无光入射的情况下,阳极也会产生 计数,即为暗计数。将紫外 MCP-PMT 安装在暗室里 面,加载指定增益左右的工作电压,老炼 16h。老炼 后,调节输出电压值,使 PMT 增益达到规定值,将 阳极输出信号输送到放大器,经过放大后的信号输送 到阈值甄别器进行过阈甄别,甄别器阈值设置为 1/4 PE 乘以放大器放大倍数,超过阈值的信号被整形为 矩形脉冲信号,经过甄别器后的信号输送到定标器, 定标器对矩形脉冲信号进行计数,关闭测试光源,测 试暗噪声脉冲数量。暗计数率为暗噪声计数值除以测 试时间。

图 6 暗计数性能测试系统

Fig.6 Performance test system of dark count

1.3.4 时间性能

如图 7 所示,信号上升时间指在单光电子输入状态,在阳极输出的信号波形前沿,脉冲幅值的 10%和 90%的点出现的时间间隔的平均值。信号下降时间指 在单光电子输入状态,在阳极输出的信号波形后沿,脉冲幅值的 90%和 10%的点出现的时间间隔的平均 值。

Fig.7 Time characteristics

按图 8 连接测试系统,信号发生器输出频率为 1 kHz 的两路同步矩形脉冲信号,一路接到示波器,作 为其触发信号,脉冲宽度设为 150 ns,;另一路作为 驱动信号驱动 LD 发光,调节驱动脉冲幅度,使光源 发光 10 次,PMT 只探测到一次光电信号。将阳极输 出信号接到示波器另一通道,使用测试软件测试信号 前沿从幅度值的 10%上升到 90%的时间和信号后沿 从幅度值的 90%到 10%的时间,分别为单个波形的上 升时间和下降时间,测试大量波形的上升、下降时间, 统计上升、下降时间分布。

Fig.8 Test system of time characteristics

2 测试结果及性能对比

2.1 测试结果

Ta

本次选用两只紫外 MCP-PMT, 编号为 PMT1、 PMT2,响应波长为 120 nm~300 nm,最大灵敏度波 长为 250 nm,按上述测试方法评估其 8 项关键性指标: 阴极辐射灵敏度、单光子性能(增益、峰谷比、能量 分辨率)、暗计数、时间性能(上升时间、下降时间) 等,测试数据见表 1 所示。

表1 紫外 MCP-PMT 测试结果

ble 1 The test results	of UV MCP-PMT
------------------------	---------------

Tube	PMT1	PMT2	
Cathode radiation	22.80 4 /11/	22.25 A /W	
sensitivity@250nm	32.89 MA/ W	23.35 mA/ w	
Voltage	2100 V	1950 V	
Gain	6.3×10^{6}	5.0×10^{6}	
Peak valley ratio	5.94	5.65	
Energy resolution	25.91%	19.56%	
Dark count	0.98 kHz	0.22 kHz	
Rise time	1.2 ns	1.3 ns	
Fall time	1.4 ns	1.1 ns	

2.2 性能分析

2.2.1 阴极辐射灵敏度

目前滨松成熟产品 R5916U-53、R3809U-53 的阴 极辐射灵敏度(@250 nm)约 30 mA/W,北方夜视自 主研发的紫外 MCP-PMT 已有试制管可以达到同等水 平,但工艺还不够稳定,造成良品率低。而北方夜视 所研发的紫外像管目前阴极辐射灵敏度可达 40 mA/W,后续将引进此工艺,继续提升紫外 MCP-PMT 的阴极辐射灵敏度。

2.2.2 单光子性能

如图 9、图 10 所示, PMT1 和 PMT2 的增益已达 10⁶,工作电压较低(~2000 V),峰谷比较高(~5), 能量分辨率较好(~20%); 滨松 R5916U-53、 R3809U-53 的工作电压较高(~3400 V),增益在 10⁵ 数量级,故单光子性能远超滨松同类 MCP-PMT 产品。

分析增益较高的原因:紫外 MCP-PMT 使用目前 国际最先进的原子层沉积(Atomic layer deposition 简称 ALD)技术^[6],如表 2 数据所示。通过在 MCP 输 入面沉积高二次发射电子发射层,可以使 MCP 的探 测效率突破开口面积比限制,大幅度提高其峰谷比和 探测效率。同时通过在通道内壁表面沉积膜层,可以 有效减小 MCP 工作时的放气量,维持工作环境的高 真空状态,减少离子反馈,极大延长 PMT 的寿命。

图 9 PMT1 单光电子谱 Fig.9 Single photon spectrum of PMT1

后面需要从工艺上摸索,试验不同的二次电子发 射层材料,来提高微通道板的增益;试验不同电阻层 材料,优化微通道板电阻一致性;通过在微通道板表 面蒸镀二次电子发射系数高的材料,提高入射电子收 集效率;试验不同镀膜温度、蒸发循环次数对微通道 板的性能影响,优化出最佳镀膜温度和摸索最佳循环 蒸镀次数;优化电极膜层与发射层的蒸镀工艺,提高 微通道板的能量分辨率,从而进一步提高紫外 MCP-PMT 的单光子性能。

C-1-1- 0	Calm hafana and after ALD another
able 2	Gain before and after ALD coating

Channel plate structure	No-ALD gain	ALD gain
Monolithic MCP	10 ³	10^{4}
Double film MCP	10 ⁵	10^{6} - 10^{7}

2.2.3 时间性能

阳极输出波形如图 11 所示。由波形图可以看出, 此管型目前上升时间约 1 ns。而滨松同类产品的上升 时间可达 180 ps,故在快速时间响应方面还有较大差 距。

图 11 紫外 MCP-PMT 波形图

针对时间性能的问题, 拟采取以下方式进一步提 升: 缩短通道板到阳极距离, 可提升时间性能^[7]; 改 进阳极结构, 目前为单阳极片结构, 如图 1 所示, 由 于通道板输出到阳极电容较大, 影响时间性能, 拟计 划使用锥形阳极, 如图 12 所示。利用电子光学仿真 软件 CST Studio Suite, 建立光电倍增管电子光学模 型, 如图 13 所示, 仿真计算内部电场分布, 计算光 电子运行轨迹, 提升上升时间。 Fig.11 The waveform of UV MCP-PMT

图 12 锥形阳极设计图 Fig.12 The design of conical anode

图 13 仿真电场分布

Fig.13 Simulation of electric field distribution

由于紫外 MCP-PMT 研发时间较短,时间性能上还未达到滨松同类产品的水平。下一步,我们将在目前已有高增益、高分辨率产品优势的基础上,继续提升紫外 MCP-PMT 的时间性能,争取未来在紫外微通道板型光电倍增管领域上赶超滨松。

3 小结

本文介绍了紫外微通道板型光电倍增管的应用 领域、国内外现状,研究了微通道板型光电倍增管的 阴极性能、单光子性能及时间性能,相对国际目前同 类型管型,具有高增益、高分辨率^[8]等的特点,为紫 外微通道板型光电倍增管的实际应用提供了可靠的 实验依据。

参考文献:

[1] 梁静静, 衡月昆, 李玉梅, 等. "日盲"紫外光电倍增管的性能研究[J]. 广西物理, 2016, **37**(1): 1-2.

LIANG Jingjing, HENG Yuekun, LI Yumei, et al. Performance study of "sun blind" ultraviolet photomultiplier tube[J]. *Guangxi Physics*, 2016, **37**(1): 1-2.

- [2] 杨杰.紫外探测技术的应用与进展[J].光电子技术, 2011(4):60-64.
 YANG Jie. Application and progress of ultraviolet detection technology
 [J]. Photoelectron Technology, 2011(4): 60-64.
- [3] 姚丽,李霁野.大气紫外光近距离通信的研究[J].大气与环境光学学报,2006,1(2):61-65.

YAO Li, LI Jiye. Study on atmospheric ultraviolet close range communication[J]. Acta atmospheric and Environmental Optics, 2006, 1(2): 61-65

[4] 徐江涛. 微通道板光电倍增管研制成功[J]. 真空科学与技术, 1994(1):40.

XU Jiangtao. Microchannel plate photomultiplier tube successfully developed[J]. *Vacuum Science and Technology*, 1994(1): 40.

- [5] Chirikov-Zorin I, Fedorko I, Menzione A, et al. Method for precise analysis of the metal package photomultiplier single photoelectron spectra[J]. *NuclInstr Meth*, 2001, A456: 310-324.
- [6] 丛晓庆, 邱祥彪, 孙建宁, 等. 原子层沉积法制备微通道板发射层的 性能[J]. 红外与激光工程, 2016, 45(9): 2-3.
 CONG Xiaoqing, QIU Xiangbiao, SUN Jianning, et al. Properties of microchannel plate emission layer prepared by atomic layer deposition [J]. *Infrared and Laser Engineering*, 2016, 45(9): 2-3.
- [7] 杨青,陈烽,侯洵. 微通道板电子传输时间特性的理论分析[J]. 应用光
 学, 2006, 27(6): 536-537.

YANG Qing, CHEN Feng, HOU Xun. Theoretical analysis of electron transport time characteristics of microchannel plates[J]. *Applied Optics*, 2006, **27**(6): 536-537.

[8] 苏德坦,李珅,孙建宁,等. 微通道板型光电倍增管分压比与能量分 辨率关系研究[J]. 红外技术, 2018, 40(12): 1125-1129.
SU Detan, LI Shen, SUN Jianning, et al. Study on the Relationship between Voltage Divider Ratio and Energy Resolution of Microchannel Plate Photomultiplier[J]. Infrared technology, 2018, 40(12): 1125-1129.